Macro Plan (2024-2025) Commecs College

Subject: <u>Mathematics</u> Teacher: <u>S Naimat Ullah /Aftab Ahmed / Khalid Javed / Ayyaz Alvi/M.Aamir Zia</u>

Class: XII (P.E/Comp.Sci)

Week	Start	End	Teaching	Topic/Chapter	Contents	Objectives
No.	Date	Date	Days			By the end of the unit S.W.A.T.:
1	Thu, 01,Aug	Fri, 02- Aug	2	FUNCTIONS AND LIMITS	 Function Composition of Functions Inverse of Composition ofFunctions 	 Identify through graph the domain and range of afunction Find the composition of two given functions Describe the inverse of composition of two givenfunctions
2	Mon, 05-Aug	Sat, 10- Aug	5	FUNCTIONS AND LIMITS	 Transcendental Functions Graphical Representations 	1. Recognize algebraic, trigonometric exponential Hyperbolic explicit implicit functions 2.Display graphically • the implicitly defined functions such as $x^2 + y^2 = a^2$ and $x^2 + y^2 = 1$, and distinguish $a^2 b^2$ between graph of a function and an equation. • the parametric equations of functions such as $x=at^2$, $y=2at$; $x=asec\theta$, $y=btan$ θ • discontinuous functions of the typey = x when $0 \le x$ < 1 $x-1$ when $1 \le x \le 2$
3	Mon, 12-Aug	Fri, 16- Aug	4	1. LIMITS	 Limit of a Function. Important Limits . Continuous and 	 Identify a real number by a point on the number line. Define and represent a. open interval,

1

			1			
					Discontinuous	b. closed interval,
					Functions	c. half open and half closed intervals,
					•	on thenumber line.
						4. Explain the meaning of phrase:
						a. x tends to zero $(x \rightarrow 0)$,
						b. x tends to a $(x \rightarrow a)$,
						c. x tends to infinity $(x \to \infty)$.
						5. Define limit of a sequence.
						6. Find the limit of a sequence whose nth
						term isgiven.
						7. State the theorems on limits of sum, difference,
						product and quotient of functions and demonstrate
						through examples.
						7. 1. Continuous and Discontinuous Functions
						i) . Distinguish between independent
						and dependent variables.
						11) Estimate corresponding change in the
						dependent variable when independent
						variable is incremented(or
						$\begin{array}{c} \text{decremented},\\ \text{iii} \text{ Differentiate } x = x^{\text{II}} \text{ where } x \in \mathcal{T} \text{ (the}) \end{array}$
						m) Differentiate $y = x^2$, where $n \in \mathbb{Z}$ (the set of integers) from first principles
						(the derivation of neuror rule)
					1.Derivative of a	(the derivation of power fulle).
	Mon.	Fri,	_		Function	differentiation
4	19-Aug	23-	5	DIFFERENTIATION	2. Theorems on	iv) The derivative of a constant is zero
		Aug			Differentiation	y) The derivative of any constant multiple
						of a function is equal to the product of
						that constant
						vi) The derivative of a product of two
						functions is
						equal to
						(the first function) x (derivative of
						the second function) plus (derivative
						of the first function) x(the second
						function).

						$ \begin{array}{c} d [f(x).g(x)] = f(x) . d \ g(x) - g(x) . d \\ f(x) \end{array} $
5	Mon, 26-Aug	Sat, 31- Aug	5	DIFFERENTIATION	 Application of Theorems on Differentiation Chain Rule 	1. Differentiate: • constant multiple of x^n , • sum (or difference) of functions, • polynomials, • product of functions, quotient of two functions i) . Prove that: $dy = dy$. du when $y = f$ (u) dx du dx u = g(x) (Chain Rule) ii) Show that: $dy = 1$ dx dx iii) Use chain rule to show that dx f(x) Find derivative of implicit function
6	Mon, 02-Sep	Fri, 06-Sep	5	DIFFERENTIATION	 Differentiation of Trigonometric and Inverse Trigonometric Functions Differentiation of Exponential and Logarithmic Functions Differentiation of Hyperbolic and Inverse Hyperbolic Functions 	 Differentiate: 1. trigonometric functions (sin x, cosx, tanx, cosecx, sec x, and cot x) from first principles. 2. Inverse trigonometric functions (arcsinx, arccosx, arctanx, arccosecx, arcsecx, and arccotx) using differentiation formulae. 3. Find the derivative of e^x and a^x from first principles. 4. Find the derivative of <i>lnx</i> and log_{ax} from firstprinciples 5. inverse hyperbolic functions (sinh⁻¹x, cosh⁻¹x, tanh⁻¹x, cosech⁻¹x, sech⁻¹x, and coth⁻¹x).

7	Mon, 09-Sep	Sat, 14-Sep	5	HIGHER ORDER DERIVATIVES AND APPLICATIONS	 Higher Order Derivatives. 2. 	 i) Find higher order derivatives of algebraic, trigonometric, exponential and logarithmic functions. ii) Find the second derivative of implicit, inversetrigonometric and parametric functions. iii)Use MAPLE command diff repeatedly to find higher order derivative of a function
8	Mon, 16- Sep	Fri, 20-Sep	5	Differentiability continues.	 Maclaurin's and Taylor's Expansions Application of Derivatives 	 i) 1. State Maclaurin's and Taylor's theorems (withoutremainder terms). Use these theorems to expand sinx, cosx, tanx, a^x, e^x, log_a (1+ x) and ln(1 + x). Use MAPLE command taylor to find Taylor's expansion for a given function. i) Give geometrical interpretation of derivative. ii) Find the equation of tangent and normal to thecurve at a given point. iii) Find the angle of intersection of the two curves.
9	Mon, 23-Sep	Sat, 28-Sep	5	Application of differentiation	1. Maxima and Minima	 i) 1 Define increasing and decreasing functions. Prove that if <i>f</i>(<i>x</i>) is a differentiable function on the open interval (<i>a</i>, <i>b</i>)
10	Mon, 30-Sep	Fri, 04-Oct	5	DIFFERENTIATION OF VECTOR FUNCTIONS	Scalar and Vector Functions	1.Define scalar and vector function. 2.Explain domain and range of a vector function

11	Mon, 07-Oct	Sat, 12-Oct	5	DIFFERENTIATION OF VECTOR FUNCTIONS	Limit and Continuity	 Define limit of a vector function and employ the usual technique for algebra of limits of scalar function to demonstrate the following properties of limits of a vector function. a. The limit of the sum (difference) of two vectorfunctions is the sum (difference) of their limits. b. The limit of the dot product of two vectorfunctions is the dot product of their limits. c. The limit of the cross product of two vectorfunctions is the cross product of their limits. d. The limit of the product of a scalar function anda vector function is the product of their limits. Define continuity of a vector function and demonstrate through examples 			
12	Mon, 14- Oct	Fri, 18-Oct	4	DIFFERENTIATION OF VECTOR FUNCTIONS	Derivative of Vector Function	Define derivative of a vector function of a singlevariable and elaborate the result: If $f(t) = f_1(t)i + f_2(t)j + f_3(t)k$, where $f_1(t), f_2(t), f_3(t)$ are differentiable i) Prove the following formulae of differentiation: dy/dt = 0 • $d[f \pm g] = df \pm dg$			
13	Mon, 21-Oct	Sat, 26-Oct	0		First Term E	xamination			
	Term-I Teaching Days -55 Classes conducted 40.14%								

14	Mon, 28-Oct	Fri, 01- Nov	5	INTRODUCTION TO SYMBOLIC PACKAGE: MAPLE.	1. Introduction	 i) 1. Recognize MAPLE environment. ii) Recognize basic MAPLE commands. iii) Use MAPLE as a calculator. Use online MAPLE help.
15	Mon, 04-Nov	Sat, 09- Nov	5	INTRODUCTION TO SYMBOLIC PACKAGE: MAPLE	1. Polynomials. 2.Graphics 3.Matrices	 Use MAPLE commands for factoring a polynomial, expanding an expression, simplifying an expression, simplifying a rational expression, substituting into an expression. Plot a two-dimensional graph. Demonstrate domain and range of a plot. Sketch parametric equations. Know plotting options Recognize matrix and vector entry arrangement. Apply matrix operations.
16	Mon, 11-Nov	Fri, 15- Nov	5	CIRCLE	 Conics Circle and its standard form of Equation General Form of an Equation f a Circle 	. Define conics and demonstrate members Define circle and derive its equation in standard form i.e. $(x - h)^2 + (y - k)^2 = r^2$ Recognize general equation of a circle $x^2 + y^2 + 2gx + 2fy + c = 0$ and find its centre and radius.
17	Mon, 18-Nov	Sat, 23- Nov	5	CIRCLE	 Equation of Circle determinedby a given condition Tangent and Normal Properties of Circle 	 Find the equation of a circle passing through Find the condition when a line intersects the circle Prove analytically the following properties of acircle. Perpendicular from the centre of a circle on achord bisects the chord. Perpendicular bisector of any chord of a circle passes through the centre of the circle. Line joining the centre of a circle to the midpoint of a chord is

						 perpendicular to thechord. Congruent chords of a circle are equidistantfrom its centre and its converse. Measure of the central angle of a minor arc is double the measure of the angle subtended by the corresponding major arc. An angle in a semi-circle is a right angle. The perpendicular at the outer end of a radialsegment is tangent to the circle. The tangent to a circle at any point of the circle is perpendicular to the radial segmentat that point
18	Mon, 25-Nov	Sat, 30- Nov	5	INTEGRATION	 Introduction. Rules of Integration Integration by Substitution Integration by Parts 	 5. Demonstrate the concept of the integral as anaccumulator. 6. Know integration as inverse process of differentiation. 7. Explain constant of integration. i) Use standard differentiation formulae to prove theresults for the following integrals ii) 2. Explain the method of integration by substitution. iii) Apply method of substitution to evaluate indefiniteintegrals. Apply method of substitution to evaluate integrals
19	Mon, 02-Dec	Fri, 06- Dec	5	INTEGRATION	 Integration using PartialFractions Definite Integrals 	 i) 1 Define definite integral as the limit of a sum. ii) Describe the fundamental theorem of integralcalculus and recognize the following basic properties:

						 iii) Apply definite integrals to calculate area under thecurve iv) Use MAPLE command int to evaluate definite and indefinite integrals v) Recognize the formula for integration by parts. vi) Apply method of integration by parts to evaluate integrals of the following types: J√a² - x² dx, J√a² + x² dx, J√x² - a² dx vii) Evaluate integrals using integration by parts. 			
20	Mon, 09-Dec	Sat, 14- Dec	5	PLANE ANALYTIC GEOMETRY- STRAIGHT LINE	 Division of a Line Segment Slope (Gradient) of a StraightLine Equation of a Straight Line Parallel to Co- ordinate Axes 	2.To solve problems based on condition of tangency			
21	Mon, 16-Dec	Fri, 20- Dec	3	1. PLANE ANALYTIC GEOMETRY- STRAIGHT LINE 2.CIRCLE	 Distance of a Point From a Line Equation of Circle 	 Find the angle between two coplanar intersectingstraight lines. Find the equation of family of lines passing through the point of intersection of two givenlines. Recognize a point with respect to position of aline. 			
22	22 Mon 23-Dec Sat,28- Dec Winter Break								
	Winter Vacations Dec 21 to Dec 31, 2024								

26	Mon, 20-Feb	Sat, 25-Feb	5	PARABOLA, ELLIPSE AND HYPERBOLA	 Parabola General Form of Equation of aParabola Equations of Tangent andNormal of Parabola Define parabola and its elements (i.e. focus, directrix, eccentricity, vertex, is, focal chord and latus rectum). 	 Define parabola and its elements (i.e. focus, directrix, eccentricity, vertex, is, focal chord and latus rectum). Derive the general form of an equation of a parabola Define parabola and its elements (i.e. focus, directrix, eccentricity, vertex, is, focal chord and latus rectum). Define parabola and its elements (i.e. focus, directrix, eccentricity, vertex, is, focal chord and latus rectum). Define parabola and its elements (i.e. focus, directrix, eccentricity, vertex, is, focal chord and latus rectum). Find the condition when a line is tangent to a parabola at a point and hence write the equation of a tangent line in slope form. Find the equation of a tangent and a normal to a parabola at a point.
27	Mon, 27-Jan	Sat, 31-Jan	4	PARABOLA, ELLIPSE AND HYPERBOLA	 Application of Parabola Ellipse Standard Form of Equation of an Ellipse Equations of Tangent andNormal of an Ellipse 	 Derive the general form of an equation of a parabola. i) Define ellipse and its elements (i.e. centre, foci, vertices, covertices, directrices, major and minor axes, eccentricity, focal chord and latera recta). Explain that circle is a special case of an ellipse. ii) Derive the standard form of equation of an ellipseand identify its elements. iii) Find the equation of an ellipse with the followinggiven elements iv) Recognize tangent and normal to an ellipse. v) Find points of intersection of an ellipse with a lineincluding the condition of tangency. vi) Find the equation of a tangent in slope form. vii) Find the equation of a tangent and a normal to anellipse at a point

28	Mon, 03-Feb	Sat, 08-Feb	4	PARABOLA, ELLIPSE AND HYPERBOLA	 Equations of Tangent and Normal of an Ellipse Hyperbola Standard Form of Equationof Hyperbola Translation and Rotation of Axes 	 i) Define hyperbola ii) Define elements of hyperbola (i.e. centre, foci, vertices, directrices, transverse and conjugate axes, eccentricity, focal chord and latera recta). iii) Recognize tangent and normal to a hyperbola. iv) Find: points of intersection of a hyperbola with a lineincluding the condition of tangency, the equation of a tangent in slope form. v) Find the equation of a tangent and a normal to ahyperbola at a point. vi) Define translation and rotation of axes and demonstrate through examples. vii) Find the equations of transformation for translation of axes, rotation of axes. viii) Find the transformed equation by using translation or rotation of axes. ix) Find new origin and new axes referred to old origin and old axes. x) Find the angle through which the axes be rotated about the origin so that the product term <i>xy</i> isremoved from the transformed equation.
29	Mon, 10-Feb	Fri, 14-Feb	4	DIFFERENTIAL EQUATIONS	 Introduction Formation Differential of Equations Solution Differential of Equation 	of a DE, degree of a DE, solution of a DE – general solution and particular solution. Demonstrate the concept of formation of a differential equation Solve differential equations of first order and first degree of the form:

						Solve real life problems related to differential equations
30	Mon, 17-Feb	Sat, 22-Feb	5	DIFFERENTIAL EQUATIONS	Orthogonal Trajectories	 i) Define and find orthogonal trajectories (rectangularcoordinates) of the given family of curves. Use MAPLE graphic commands to view the graphs of given family of curves and its orthogonal trajectories
31	Mon, 24-Feb	Sat, 28-Feb	5	PARTIAL DIFFERENTIATION	.1.Differentiation of Functionof Two Variables	 i) . Define a function of two variables. ii) Define partial derivative. Find partial derivatives of a function of two variables i) Define a homogeneous function of degree n. ii) State and prove Euler's theorem on homogeneousfunctions. Verify Euler's theorem for homogeneous functions
32	Mon, 03-Mar	Sat, 08- Mar	5	PARTIAL DIFFERENTIATION	2.Euler's Theorem	 of different degrees (simple cases). Find partial derivatives of a function of two variables iii) Define a homogeneous function of degree n. iv) State and prove Euler's theorem on homogeneousfunctions. Verify Euler's theorem for homogeneous functions of different degrees (simple cases).
33	Mon, 10-Mar	Fri, 14- Mar	5	INTRODUCTION TO NUMERICAL METHODS	1.Numerical Solution of Non-linear Equations 2.Numerical Quadrature	 i) Describe importance of numerical methods. ii) Explain the basic principles of solving a non-linear equation in one variable. iii) Calculate real roots of a non-linear equation in onevariable by bisection method, regula-falsi method Use MAPLE command fsolve to find numerical solution of an equation and demonstrate through examples

					Prelims Exa	amination
			137		Syllabus Coverage =	100%
Term-IIIWorking Days- 57Teaching Days - 42Classes conducted 100%						
38	Mon, 14- Apr	Sat,18- Apr	05			
37	Mon, 07- Apr	Sat,12- Apr	06			
36	Mon, 31- Mar	Fri, 04- Apr	01	Revision / Prelims Exams		
35	Mon, 24- Mar	Sat, 29- Mar	00			
34	Mon, 17-Mar	Sat, 22- Mar	5	INTRODUCTION TO NUMERICAL METHODS	1.Numerical Solution of Non-linear Equations 2.Numerical Quadrature	 of definiteintegrals without error terms iv) Describe importance of numerical methods. v) Explain the basic principles of solving a non-linearequation in one variable. vi) Calculate real roots of a non-linear equation in onevariable by Newton-Raphson method. Use MAPLE command trapezoid for trapezoidalrule and simpson for Simpson's rule and demonstrate through examples
						 i) Define numerical quadrature. Use Trapezoidal rule, Simpson's rule, to compute the approximate value

Checked By HOD: _____